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8-3001 Leuven, Belgium 
t lnstitut fiir TRwretische Physik, Universim Kiiln, D-50937 Kdln, Germany 
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Abstract. The thermodynamic and retrieval properties of fully connected Q-king networks 
are studied in the replica-symmeuic mean-field approximation. In pardcular. capacity-gain 
pmmeter and capacity-temperature phase diagrams are derived for Q = 3 , 4  and Q = m and 
different distributions ofthe stored patterns. Furthermore. the optimal gain function is determined 
in order to obtain the best performance. Where appropriate. the results are compared with the 
diluted and layered versions of these models. 

1. Introduction 

Neural networks with multi-state neurons are able to store and retrieve grey-toned patterns 
[l], which are useful, for instance, in the context of pattern recognition of pictures containing 
different grey levels. Special cases, including Q-king-type models, were studied for the 
first time in 12-41 and have been the subject of intensive research since then (see [5,6] for 
an overview). 

The Q-king model reveals a very rich function structure for the gain parameter of 
the input-output relation. The parallel dynamics of extremely diluted [3,5,7] and layered 
feedforward [SI versions of this model have been solved exactly at arbitrary temperatures and 
for arbitrary Q. The structure of the capacily-gain parameter and the capacity-temperature 
diagrams has been determined for Q = 3,4 and Q = CO. 

Concerning the fully connected Q-king network, the overlap dynamics in the case of 
low loading [9] has been studied for arbitrary gain parameters, 6 ,  especially for Q = 3. In 
particular, it has been demonstrated that the retrieval state with perfect recall only appears in 
a restricted interval for b .  This interval shrinks to zero as Q -+ CO. For extensive loading 
of uniform patterns, i.e. patterns taking equidistant states, and with the gain parameter 
fixed to be b = 4, the equilibrium properties have been discussed in [ l ]  on the basis of 
replica-symmetric mean-field theory. It has also been shown [I ]  that the storage capacity 
decreases with the number of grey levels as Q-*. which has been confirmed in recent 
extensive numerical simulations [lo]. A different approach to the Q-state problem has 
been presented in [ 111. Optimal Gardner capacities for multi-state and analogue neurons 
have been determined [12-141 and their generalization abilities have been derived [15]. 
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Very recently, it has been demonstrated [I61 that these networks exhibit a number of 
metastable retrieval phases growing as Q2 for low loading and living on restricted intervals 
for b. Furthermore, it has been shown that the transitions between these phases are usually 
first order, and that there are strong hysteresis effects, as exemplified by a capacity-gain 
parameter diagram for Q = 4. 

In this paper, we consider the fully connected Q-Ising neural network with arbitrary 
gain parameter and we investigate explicitly both its thermodynamic and retrieval properties 
for Q = 3,4 and Q = W. 

The rest of this paper is organized as follows. In section 2 the model is defined 
from a dynamical point of view. Section 3 briefly recalls the replica-symmetric mean-field 
approximation and presents the relevant fixed-point equations for general Q. In section 
4 these equations are studied in detail for zero temperature and Q = 3 (section 4,1), 
Q = 4 (section 4.2) and Q = 00 (section 4.3) for different distributions of the patterns. 
In particular, the function storage capacity for the gain parameter and the optimal gain 
parameter leading to the smallest Hamming distance are discussed. The results turn out to 
be significantly different for odd and even Q. Section 5 analyses the capacity-temperature 
diagrams and determines the thermodynamic properties of the Q = 3 (section 5.1) and 
Q = 00 (section 5.2) models. They are compared with the diluted and layered versions of 
these models. Section 6 presents the concluding remarks. Finally, the appendix contains 
the specific fixed-point equations for the different values of Q treated in the paper. 

2. The model 

We consider a network of N neurons which can take values in the set of equidistant states 

S p  = (Q = -1  + 2(k - l)/(Q - I), k = 1, .. . , Q]. (1) 

In this network, we want to store p = aN patterns (<J’, p = 1,. . . , aN) that are supposed 
to be independent and identically distributed random variables with zero mean and variance 
A. The latter is a measure for the activity of the patterns. 

Given a configuration U = (u1 , . . . , UN),  the local field hi of neuron i is 

where Jij are the synaptic couplings given by the well known Hebb rule 

The neurons are updated asynchronously according to the transition probability 

Here the inverse temperature B = T-I measures the noise level, and the energy potential 
ci(slh) is taken [1.4] to be 

~ i ( s l h )  = -hs + bs2 b > 0. (5) 
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At zero temperature, U/ takes the value sk, leading to the minimum of the energy potential. 
This is equivalent to using an input-output relation 

U: = g[h;(dl  

g(x )  = CS~IB(~(S~+~ +sk) - X )  - e m  t s ~ - ~ )  - X)I  
Q 

k=l 
(6) 

with so = -CO and sa+] = CO. For finite Q this input-output relation has a step-like shape 
and the parameter b controls the steepness of the steps. For Q = CO, the input-output 
function (6) becomes the piecewise linear function 

sign(x) if 1x1 > 2b 

The slope of the linear part is given by (2b)-’. In general, as b goes to zero, the input-output 
relation reduces to that of the Ising-type network, independent of Q. 

In the following, we present a detailed study of the properties of these fully connected 
networks as a function of T and b for different values of A. 

3. Replica-symmetric mean-field theory 

The long-time behaviour of the network under consideration is governed by the Hamiltonian 

Using standard techniques [17] it is straightforward to show that the free energy within 
the replica-symmetry approximation is given [l] by 

with 

4 r =  
(1  -C)Z 

- f f c  
b = b - - -  

2 1 - C ’  

Here s denotes the number of condensed patterns, ((. . .)) indicates the average over the 
patterns { E , ]  and Dz is the Gaussian measure 

Dz = dz (2n)1/2exp(-z2/2). (12) 
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In (9)411) me represents the macroscopic overlap between pattern 1 and the network state, 
q is the Edwards-Anderson order parameter with its conjugate variable r (the mean-square 
random overlap with the non-condensed patterns), is the effective gain parameter, and 
C is the 'susceptibility' that is proportional to the fluctuation of the 'magnetization', i.e. 

At this point, we note that this result (9) is the same as equation (11) in [l], except 
that the gain parameter b. in the energy potential, is now arbitrary instead of being fixed 
to be i. As a consequence, the effective gain parameter 6 can be negative, implying that 
the input-output function reduces to that of Ising-type neurons. Furthermore, the variables 
m p ,  C, 6 correspond to the variables m,/C, x .  fi in [I]. 

The phase structure of the network is determined by that solution of the fixed-point 

c = B ( ( ( 0 2 )  - 

equations for the order parameters 

mp = +(( S ~ z t ~ z ) ) ) )  

= (( S Dz (o(zN2)) 

C = i((/Dzz(4z)))) f i  

which maximizes -pf(B). Here 

>I 
>I 

TI, U exp flu E, m# + f i z  - 6u [ (  
[ (  TI, exp ps E,, met@ + f i z  - 6s 

@(e)) = 

In the following sections we discuss these equations for Q = 3 , 4  and Q = w mod, 

(13) 

4. Retrieval properties at zero temperature 

4.1. Q = 3 

Let us consider a three-state network with patterns taking the values f l  with probability 
A/2, and 0 with probability (1 - A). For a Mattis retrieval state, say mp = m8,l, the 
fixed-point equations (13x15) have the particular form given in the appendix (equations 
(A.l)-(AS)). These fixed-point equations have been studied numerically. For 6 4 0 the 
corresponding equations can be further reduced by introducing the variable x = m/&. 
One arrives at 

erf(x) 2 
&=--- (Ae-'' t 1 - A) 

x &  

together with, in view of (11). the following condition 

b 4 bo = -(Ae-X2 + 1 - A ) .  J; 
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Equation (17) only has solutions for A 2 f. For A = 1, i.e. for king patterns, equation (17) 
reduces to its analogue in the Hopfield model 1171 and the maximum possible value of o 
is CQ M 0.138 for any b < bo FZ 0.0151. This decreases as A gets smaller. For uniformly 
distributed patterns ( A  = 3 )  we get [YO % 0.0209 for b < bo % 0.0276. 

The cr-b phase diagrams for the retrieval state (m # 0) are shown in figure 1 for A = 1 
and A = f .  The retrieval state disappears discontinuously at ac, denoted by the (thin) full 
curve. For uniformly distributed patterns there are two types of retrieval state (with 6 z 0). 
In region I r is of order 0(1), while in region I1 it is of order O(10). The retrieval region 
U does not appear for A c i, in contrast with the extremely diluted version of the model 
131. In fact, except for the absence of this region ll, the phase diagram for A = 0.01 looks 
very similar to that for the diluted version, i.e. region I in figure 2(b) in [3]. The retrieval 
state becomes’ the global minimum of the free energy below the thick full curve. There 
is a sharp drop at b = $ when entering the paramagnetic phase (the latter is indicated in 
the figure with a broken curve). Numerically, it is extremely hard to detect a substantial 
re-entrance. Here, we note that the free energy of the retrieval state at o = 0 is A(b - i), 
while that of the paramagnetic state is always zero. 

Figure 1. Q = 3 cr-b phase diagrams at T = 0 for A = 1 and A = $. ( (0)  and (b). 
respectively). The (lhin) full curve represents the maximal storage capacity rr,, the thick 
full curye the thermodynamic transition of the retrieval state, the broken curve the spin-glass 
Oansition, and the dotted curve the optimal gain parameter. In (bJ, there are two retrieval 
regions: in region I I iti O(I). while in region I1 I iti O(10). 

The quality of the retrieval state is determined by the Hamming distance between the 
embedded pattern and the microscopic state of the network, i.e. 

dH(EC, U )  = N-’ E((: - uj)’. 
i 

This quantity depends not only on the overlap itself but also on the activity of the neurons 
(((u~))). Figure 1 also shows the dotted curve as the best value for the gain parameter b to 
obtain the minimal Hamming distance for a given value of cr. 

Concerning the spin-glass phase we find that, for 6 < 0 ,  q = 1 and r = (1 +=)’, 
with the condition oc > 2n&*. For positive 6, the corresponding fixed-point equations can 
again be reduced into one equation in the variable y = 6 fa 
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where E ( y )  = 1 - erf(y). The right-hand side of (19) is lower bounded, giving a minimum 
value of a. This minimum is zero for b smalfer than FS 0.484. Comparing the 
free energies of the spin-glass and the paramagnetic phase, we find the transition line 
displayed in figure 1. This line starts at b 0.405 and the spin-glass solution disappears 
discontinuously at this boundary. We remark that this phase boundary is independent of A. 

4.2. Q = 4  

We expect the thermodynamic properties of a network consisting of neurons that are able 
to take on the zero state (cq = 0) to be significantly different from those of a network in 
which this state is forbidden for the neurons. This is due to the fact that in the latter a 
paramagnetic phase at zero temperature has to be absent. Although m = q = r = 0 is a 
solution of the saddle-point equations below, it does not have any physical meaning at zero 
temperature for even Q. This difference should, of course, become less significant for a 
higher number of possible states. Therefore, for completeness, we consider in this section 
the Q = 4 case. 

According to (l) ,  the neurons, as well as the pattems, can take on the values 
-1, -113, +1/3, + I .  In analogy to the threestate network, where the parameter A 
measures the weight of the extreme states f l  in the pattem distribution, we consider a 
situation in which the patterns can take on the value zk1 with probability d/Z and f1 /3  
with probability (1 - A)/2 where d = (9A - I)/& The fixed-point equations for a retrieval 
state with 6 > 0 are given by (A.9)-(A.11) of the appendix. To be able to interpret the 
different phases occurring we note in passing that for the limiting case 01 -+ 0 one has the 
following retrieval solutions depending on the gain parameter b: 

b < 114 m = 3 A  

114 c b c 3A/4 

3Af4 < b 314 m = l a n d A  

314 < b m = A  

m = 3 A  and 1 

with A = (1 + 2d)/(1 +SA) E [1/3,11. Hence, we will get a much richer phase diagram 

< 0 the corresponding equations can again be reduced further by the introduction 
than for Q = 3. 

For 
of the variable x = m/& to 

which yields, in analogy to equation (17), the condition for b 

b < bo = &[A exp(-x2) + (1 - A)exp(-(x/3)’) . I 
In contrast to the Q = 3 case, equation (21) always has a solution for small enough a. The 
maximum possible value of a is again (Y = 0.138, which is attained for d = 1 (king f l  
patterns) and for A = 0 using 11/3 pattems) for any b 6 0.015 as in the Q = 3 case. The 
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maximal storage capacity is smaller for uniformly distributed patterns (&IO) and increases 
for decreasing, as well as increasing d. 

The complete a 4  diagram is depicted in figure 2 for various parameters d by solving 
equations (A.gt(A.11) numerically. Considering equation (20), we expect essentially three 
different phases. For b + 00, we find, for all values of d, a retrieval phase FMA with 
m %z A and a maximum storage capacity a, equal to the storage capacity at b = 0. In 
the limit b + 0, one finds a retrieval phase F M ~ A  with m %z 3A and a maximum storage 
capacity that is determined by equation (21). In between these limiting cases, one finds 
(for A # 0, 1) a phase with optimal retrieval FM,,  which means the phase with the highest 
possible storage capacity a and the smallest Hamming distance. However, these three 
different phases need not be separated by discontinuity lines for A = 0.5 (figure 2(c)) and 
d = 0.25 (figure 2(d)). For instance, at d = 0.75 the F M ~ A -  and the FM1-phase can be 
deformed into each other continuously, as can be seen from figure 2(b). Finally, for = 0 
(d = I), the FMA- (FM3A-) and FMI-phases are identical. At this point we remark that 
the FM-phases for uniform patterns found in figure 2(c) confirm the results of [16]. 

m[ ,030 .04 

a 015 a .oz F% 

SO ~ 8% 

.OOO .oo 
0.0 0.5 1.0 0.0 0.5 1.0 

b b 

Ffgure 2. Q = 4 ar-b retrieval phase diagrams at T = 0 for (a) A = 1, (b)  A = 0.75. (c) 
A = 0.5 and (d )  = 0.25. The meaning of the lines is as in figure 1. The different phases 
according to (20) are indicated explicitly. 

The largest possible storage capacity increases with d and the value of b that has to 
be chosen to achieve the maximal storage gets smaller, as expected. The location of the 



3418 D Boll4 et Q[ 

characteristic bump in the phase diagram that indicates the FMI-phase as well as the optimal 
retrieval line also shifts to smaller values of b for increasing 6. 

In order to discuss the spin-glass (SG) phase ( m  = 0, q > 0) we have to solve the 
equations 

c = -- 2 1  { 1 + Zexp ( -7)] (46/3)? 
3 s  

which are independent of 6. In correspondence with the three different retrieval phases, we 
have to look for three different thermodynamic lines, ctsz(b, 6), ayG(b, 6) and aiG(b, 6). 
where the SG (free) energy becomes smaller than that of the retrieval phases. For this reason 
we have to compare the energy per spin given by (note that T = 0) 

E = - i m 2 A - - + q  b +  . 7 ( f >  
In figures 2(a)-(d), we depict these thermodynamic lines for four different values of 6. For 
b -+ CO, the value of a:'(b, 6)  becomes aSz(0, A). As long as one can separate the F M I -  
phase from the F~&-phase, both lines, aiG(b. A) and asz(b, 6), depend monotonically 
on b and go to zero at some intermediate value of b. In this case (see figure 2(c) and (d)), 
one also has an asG(b. 6) line. One can also adopt the other point of view and ask for 
which value of b at a given 01 does one obtain a thermodynamically stable retrieval state? 
This can also be read from figure 2. 

4.3. Q = CO 

Finally, we turn to the case Q = CO. Considering uniformly distributed patterns between 
-1 and 1 (and hence A = i), the fixed-point equations are still given by (13)-(15) with 
(16) replaced by 

>I (26) 
f l  do U exp BO E,, m# + f i z  - 60 

~ l , d s e x p [ ~ s ( ~ , m , ~ , + f i z - g s  

[ (  
11 ' 

(0) = 

For the Mattis state, this leads to the explicit fixed-point equations presented in (A.12)- 
(A.14) of the appendix. These equations are written down for positive 6 .  For 6 4 0 the 
limit 6 -+ 0 has to be taken. (In this limit, q = I .) In this case, one can further reduce the 
equations by introducing the variable x = m/&: 

1 exp(-xZ) 
3 

together with, in view of ( l l ) ,  the following condition 



Fully connected Q-Ising networkr 3419 

The maximum possible value of a is a0 w 0.0127 for any b < 0.0199, 
For 6 positive, the transition line from the retrieval states to the spin-glass states, shown 

in the a-b phase diagram as a full curve (figure 3), has been obtained by solving (A. 12)- 
(A.14) numerically. The transition is first order. At this point, it is interesting to compare 
this retrieval line with its analogues in the extremely diluted and layered feedforward Q- 
king neural networks [7,8]. For all three models, the storage capacity is zero for b > f .  
For b < f, the storage capacity remains finite, though its value in the present model is 
relatively small compared with those mentioned above. This tells us that for increasing 
correlations among the neurons, the storage capacity decreases. As before, the retrieval 
state becomes the global minimum of the free energy under the thick full curve. The dotted 
curve indicates the values of the gain parameter b needed to obtain the minimal Hamming 
distance. 

D ' O 2 K  .01 I '.. I I I 

I 
I 
I 

': 

'. I !. 
/ 

.OO 
.a0 2 5  .50 

b 
i 

Figure 3. Q = M a-b phase diagram at T = 0 for uniformly distributed patterns. 

In contrast with the Q = 3 network, where the full memory phase at zero temperature 
is unstable against replica-symmelry breaking, the memory phase of the Q = CO model at 
zero temperature is only partially broken. The boundary below which breaking occurs is 
displayed as the chain curve in figure 3. 

For the discussion of the spin-glass phase, one can follow the same argument as in the 
Q = 3 network, starting from one fixed-point equation analogous to (19). Here one finds 
that the minimum value ct = 0 occurs when b < t .  For b 2 4, the region of existence of 
the spin-glass states is bounded by a z (b - ;)*, i.e. the broken curve in figure 3. The 
spin-glass transition is second order. These results are similar to the ones obtained in [6] 
for networks with graded-response neurons but binary stored patterns. 

In the region where the spin-glass solutions appear, either the paramagnetic solutions 
do not exist or they lead to an ill-defined free energy. This can be seen by examining the 
solutions of the analogue of (30) together with the requirement C < 1. 

We have also considered the effect of non-uniformity of the patterns by adding king 
patterns according to, for example, the output statistics !'(a&) = f ( l  -a )  + $ ( S ( f P  - 1) + 
S ( f @  + 1)) with a between 0 and 1. The overall picture does not change. The actual values 
of the maximal capacity a in an a-b diagram decrease when decreasing a from 1 to 0. 

We end with the observation that the w b  diagrams for the fully connected and the 
layered feedforward Q = CO networks are similar to each other, while both are qualitatively 
different from that of the extremely diluted version of this network. 
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5. Phase diagrams for non-zero temperature 

5.1. Q = 3 

We restrict ourselves to a discussion of the a-T phase diagrams for uniformly distributed 
patterns, but we consider different values of the gain parameter b. 

Concerning the paramagnetic phase, we have found that it  does not exist in a restricted 
region of the parameters of the network. Recalling the fixed-point equations (13H15) or 
(A.I)-(A.3), we see that the first two equations are trivially satisfied, such that the existence 
of this phase only depends on the equation for C. This leads to the following equation for 
the gain parameter 6:  

- 
For a = 0 or T = 0, obviously, b = b. For finite a, it is convenient to rewrite (29) in the 
form 

01 = 2(b - i)[T(1 + $eas) - 11. (30) 
For T > 1, equation (30) always possesses a solution. For 0 < T < 1, the situation 
is more complicated since the right-hand side is bounded. Therefore, given b and T, no 
paramagnetic solution exists for a larger than this bound. At T = I ,  this bound is exp(b- 1); 
as T approaches zero the bound goes to infinity. 

< T < T, < 1 with 
Z and E given as the solutions of the equation 

If b is smaller than 0.4631, then there is a temperature region 

j3 = 1 + f exp(j3b) (31) 
where C > 1, such that the free energy (9) of the paramagnetic state is not well defined. It 
is interesting to remark that the line given by equation (31) coincides with the boundary of 
the region where the zero state (at CY = 0) becomes unstable (see 191). 

All this is illustrated in the a-T phase diagram of figure 4 for several values of b. In 
the region between the short-broken curve and (the far right-hand side 00 the broken curve 
(starting at the merging point and ending at a = exp(b - 1) for T = I), no paramagnetic 
state exists. In fact, the broken curve represents the transition line between the spin-glass 
state and the paramagnetic state, and has been checked by comparing the corresponding 
free energies. This transition is first order. We further remark that the difference between 
these free energies diverges linearly as a goes to infinity. 

The phase diagrams are completed by solving numerically the fixed-point equations 
(A.l)-(A.3) for the retrieval states, leading to the full curve. We also show the 
thermodynamic transition curve (thick full curve) below which the retrieval states become 
the global minima of the free energy. Finally, the chain curve denotes the Almeida-Thouless 
(AT) line, indicating the temperatures below which the replica-symmetric approximation is 
no longer valid. This curve is hardly seen on the scale of the figure. 

The overall picture of the phase diagram forb = 4 looks similar to that of the Hopfield 
model, while the phase diagram for b = 4 is quite different in the sense that the paramagnetic 
phase exists between the retrieval phase and the spin-glass phase. (This has also been noted 
in [ 11, but the detailed phase diagram presented there is not complete.) This existence region 
of the paramagnetic phase extends in the direction of growing values of a for increasing 
b. This seems to be related to the fact that the larger b is, the more the paramagnetic state 
becomes energetically favourable. In fact, one can easily check that, for CY = 0, the free 
energy of the paramagnetic state is the lowest for any T if b is greater than i. 
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.01 

U .02 

.oo 
1 

Figure 4. Q = 3 a-T phase diagram forb = f and b = f and uniformly disVibuted patterns 
((4 and (b).  respectively). The meaning of the curves is as in figure 1. The chain curve is the 
AT line; the short broken curve indicates the border above which no paramagnetic State exists. 

5.2. Q = C O  

In this case, the boundary of the spin-glass phase can be obtained by expanding the relevant 
equations (14)-(16) with respect to r .  We arrive at 

with 

6 0 = b - i ( C i 1 - l ) .  (34) 

We expect that the spin-glass phase exists for all CY if T is not too high. Noting that (YSG 

becomes zero as CO -+ 1, the temperature T ~ o  below which spin-glass states exist for all CY 

can be determined by the condition CO = 1 with 60 = b. Such a solution is only possible 
forb < i. 

To determine the thermodynamic transition line for this phase, we first need to investigate 
the properties of the paramagnetic phase. The existence of the latter depends on 

01 = 2(b - 6)(c-' - 1)  (35) 

where C is given by the right-hand side of (33) with 60 replaced by 6. By determining 
the limit of the right-hand side of (35) for + f m ,  we learn that the paramagnetic phase 
exists for all CY if T > 1, while it does not exist for CY z (LPM if T < 1. Furthermore, 
the condition C < 1 implies that the derivative of this right-hand side at 6 = b has to be 
negative, or C(6 = b) < 1. Recalling that this is exactly the condition for obtaining TSC, 
it means that there is no paramagnetic phase for T c TSG for all CY. Of course, in general, 
the spin-glass phase can exist below the boundary of the region for non-existence of the 
paramagnetic phase. Therefore, it is interesting to compare the free energies of both phases 
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for given T > TSO and 6. Taking a = as0 (1 + E ) ,  where e is a small positive number, we 
get 

where 

with 50 being 'the solution of (34) at (Y =  as^. We find that the energy difference A f is 
always positive near and that it diverges linearly with a for T z 1 in the limit a -+ CO. 

Therefore, the paramagnetic phase is always energetically favourable in comparison with 
the spin-glass phase. This means that the transition line between the spin-glass phase and 
the paramagnetic phase coincides with the boundary of existence of the paramagnetic states 
and that it is of first order. 

To complete the a-T phase diagram we have calculated the temperature dependence of 
the storage capacity by solving numerically the fixed-point equations (A.l2)-(A.l4), The 
transition to the spin-glass states is  first order. 

Figure 5 shows the phase diagram for a typical value of the gain parameter, 6 = 4. 
It is qualitatively similar to the a-T diagram for the Hopfield model. The full curve 
bounds the retrieval region. The retrieval states again become the global minima of the free 
energy below the thick full curve. The broken curve corresponds to the spin-glass transition 
discussed above. 

Figure 5. Q = m u-T phase diagram and for b = t and uniformly distributed patterns. 

6. Concluding remarks 

We have considered both the thermodynamic properties and retrieval properties of fully 
connected Q-Ising networks. Fixed-point equations have been derived for general 
temperature and arbitrary Q in the replica-symmetric mean-field approximation. For 
Q = 3,4  and Q = 03, capacity-gain parameter diagrams and capacity-temperature phase 
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diagrams have been discussed in detail for different distributions of the stored patterns. The 
optimal gain function leading to the smallest Hamming distance has been determined. 

Concerning the capacity-gain parameter diagrams, we find that the results are essentially 
different for odd and even Q and that they are extremely dependent on the pattern activity. 
Furthermore, there are also interesting differences with the extremely diluted and layered 
feedforward versions of the models [7,8]. Although the results for the Iatter are obtained 
using an exact dynamical approach, such a comparison makes sense since, in all cases 
we have studied here, replica-symmetry-breaking effects turn out not to be significant, as 
illustrated by the AT lines. 

In the case of uniformly distributed patterns, we see that, for Q = 3, different retrieval 
regions show up for small b and the capacity is reduced by a factor compared with the 
capacity for the extremely diluted and layered architectures. The line of optimal Hamming 
distance is given exactly by b = i; in the extremely diluted model it is located for the 
whole retrieval region in the interval b E [0.4,0.5], while in the layered model it bends to 
smaller b for growing a. 

For Q = 4, the storage capacity behaves entirely differently as a function of b. First of 
all, it does not decrease for b > $ and a(b = 0) = a(b = 03). Furthermore, there are three 
different retrieval phases. The optimal Hamming distance is again exactly b = 4, while it 
is located in the interval [0.4,0.5] for the diluted model. Here, it is interesting to remark 
that for non-uniformly dish-ibuted patterns this optimal line is also always situated in the 
F M I  retrieval phase (where m = 1). 

For Q = 03, the diagram for the layered and fully connected models are very similar 
in shape (but the capacity is reduced roughly by a factor of 10 in the latter). It is simple 
compared with the Q = 4 diagram. The line of optimal Hamming distance is close to 
b = f in the whole retrieval region only for the diluted model. For the other architectures, 
it quickly bends towards smaller values. 

From all this information, together with the detailed results on low loading (a = 0) for 
the fully connected model [9,16], we conclude that optimal retrieval with nearly vanishing 
Hamming distance becomes harder as Q increases. To study optimal retrieval in networks 
with higher values of Q, we think it  is sufficient to look at the retrieval phase with m = 1. 
For Q = CO, the retrieval states are never perfectly correlated with the stored patterns. 

Looking finally at the a-T diagrams, we immediately notice that for Q = 3 the situation 
is rather complicated, even for uniform patterns, and depends very much on the value of 
b. For b close to, and greater than, the optimal b = 4, the phase diagram is completely 
different from that of the Hopfield model, in the sense that the paramagnetic phase exists 
between the retrieval and the spin-glass phase. For Q = 4, we expect an even more complex 
behaviour, as exemplified already by the or-b diagrams, such that we defer a discussion of 
the temperature dependence to another occasion. For Q = 03, the diagram is relatively 
simple again and qualitatively resembles that of the Hopfield model. 
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Appendix 

In this appendix, we write down explicitly the fixed-point equations (13)-(16) for Q = 3, 
Q = 4 and Q = W. For a three-state network with patterns taking the values f l  with 
probability A / 2  and 0 with probability (1 - A), we obtain for a Mattis state 

where 

For zero temperature, the function V,(x, y) reduces to 

V&, Y)  = sign(x)@(lxl- B) (A.5) 

and hence the Gaussian variable z can be integrated out explicitly. For 6 > 0, one essentially 
obtains equations (15) of [I], taking into account the effective gain parameter (11). 

For a Q = 4 model in which the patterns can take the value f l  with probability x / 2  and 
&1/3 with probability (1 -6)/2, where 6 = (9A- 1)/8, the fixed-point equations (13)-(16) 
for a Mattis state read 

1 
m = - / Dz 

A 

q = 1 Dz PU; (m + z f i ,  6 )  + (1 - 6)U; (m/3 + z f i ,  6)] 

( m  + z f i . 6 )  + (1 - A)Up (m/3 + 2 6 ,  i)] 

C = - 1 JDzz [“Up (m + z f i . 6 )  + (1 - d)U, (m/3+zl/;;?,8)] 
f i  

where 

sinh(Px) + exp(8gyj9) sinh(@x/3) 
cosh(&) + exp(8py/9)cosh(gx/3) . c.’a(x, Y) = 

Again, for zero temperature, the function U , ( x ,  y) reduces to 

U&, y )  = sign(x)[l + 28(1xI - 4y/3)]. 

(A.6) 

(A.7) 
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In that case, equation (A.6) implies for 6 > 0 

3m - 46 
3A 

1 - 6  m + 4 b  1-1 m - 4 b  1-6 
erf - 

+ ~ 3 ( 3 i )  + T ~ I ~ ( G & )  T~~(&))  
3m + 46 3m - 4b 

(A.lO) 

+ i i e x p ( - z ) + ( i - r i ) e x p  2ar ( -- 1::r) 

Finally, for Q = 00 and uniformly distributed patterns (A = f), a retrieval state is 
given by the solution of the fixed-point equations (13x15) and (26). For the Mattis state 
at zero temperature, ( U )  = j(mE + G z ) ,  where the effective input-output function j is 
given by (7) with 6 replaced by the effective gain parameter 6.  This allows us to perform 
the Gaussian average in the fixed-point equations explicitly resulting in 

(A.13) 

(A.14) 

for positive 6. We remark that it is also straightforward to perform explicitly the integration 
associated with the random patterns but we do not need to write down the resulting 
algebraically complex expressions. 
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